Bayesian Learning of Consumer Preferences for Residential Demand Response

Autor: Goubko, Mikhail V., Kuznetsov, Sergey O., Neznanov, Alexey A., Ignatov, Dmitry I.
Rok vydání: 2017
Předmět:
Zdroj: IFAC-PapersOnLine, 49(32), 2016, p. 24-29, ISSN 2405-8963
Druh dokumentu: Working Paper
DOI: 10.1016/j.ifacol.2016.12.184
Popis: In coming years residential consumers will face real-time electricity tariffs with energy prices varying day to day, and effective energy saving will require automation - a recommender system, which learns consumer's preferences from her actions. A consumer chooses a scenario of home appliance use to balance her comfort level and the energy bill. We propose a Bayesian learning algorithm to estimate the comfort level function from the history of appliance use. In numeric experiments with datasets generated from a simulation model of a consumer interacting with small home appliances the algorithm outperforms popular regression analysis tools. Our approach can be extended to control an air heating and conditioning system, which is responsible for up to half of a household's energy bill.
Databáze: arXiv