On the differentiability of hairs for Zorich maps

Autor: Comdühr, Patrick
Rok vydání: 2017
Předmět:
Zdroj: Ergod. Th. Dynam. Sys. 39 (2019) 1824-1842
Druh dokumentu: Working Paper
DOI: 10.1017/etds.2017.104
Popis: Devaney and Krych showed that for the exponential family $\lambda e^z$, where $0<\lambda <1/e$, the Julia set consists of uncountably many pairwise disjoint simple curves tending to $\infty$. Viana proved that these curves are smooth. In this article we consider a quasiregular counterpart of the exponential map, the so-called Zorich maps, and generalize Viana's result to these maps.
Comment: 20 pages
Databáze: arXiv