On the differentiability of hairs for Zorich maps
Autor: | Comdühr, Patrick |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Ergod. Th. Dynam. Sys. 39 (2019) 1824-1842 |
Druh dokumentu: | Working Paper |
DOI: | 10.1017/etds.2017.104 |
Popis: | Devaney and Krych showed that for the exponential family $\lambda e^z$, where $0<\lambda <1/e$, the Julia set consists of uncountably many pairwise disjoint simple curves tending to $\infty$. Viana proved that these curves are smooth. In this article we consider a quasiregular counterpart of the exponential map, the so-called Zorich maps, and generalize Viana's result to these maps. Comment: 20 pages |
Databáze: | arXiv |
Externí odkaz: |