Classification of Minimal Separating Sets in Low Genus Surfaces
Autor: | Veerman, J. J. P., Maxwell, William J., Rielly, Victor, Williams, Austin K. |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Consider a surface $S$ and let $M\subset S$. If $S\setminus M$ is not connected, then we say $M$ \emph{separates} $S$, and we refer to $M$ as a \emph{separating set} of $S$. If $M$ separates $S$, and no proper subset of $M$ separates $S$, then we say $M$ is a \emph{minimal separating set} of $S$. In this paper we use methods of computational combinatorial topology to classify the minimal separating sets of the orientable surfaces of genus $g=2$ and $g=3$. The classification for genus 0 and 1 was done in earlier work, using methods of algebraic topology. Comment: 24 pages, 5 figures, 2 tables (11 pages) |
Databáze: | arXiv |
Externí odkaz: |