Completely decomposable direct summands of torsion--free abelian groups of finite rank
Autor: | Mader, Adolf, Schultz, Phill |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $A$ be a finite rank torsion--free abelian group. Then there exist direct decompositions $A=B\oplus C$ where $B$ is completely decomposable and $C$ has no rank 1 direct summand. In such a decomposition $B$ is unique up to isomorphism and $C$ unique up to near-isomorphism. Comment: 6 pages |
Databáze: | arXiv |
Externí odkaz: |