Metrics of constant positive curvature with conical singularities, Hurwitz spaces, and ${\rm det}\, \Delta$

Autor: Kalvin, Victor, Kokotov, Alexey
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1093/imrn/rnx224
Popis: Let $f: X\to {\Bbb C}P^1$ be a meromorphic function of degree $N$ with simple poles and simple critical points on a compact Riemann surface $X$ of genus $g$ and let $\mathsf m$ be the standard round metric of curvature $1$ on the Riemann sphere ${\Bbb C}P^1$. Then the pullback $f^*\mathsf m$ of $\mathsf m$ under $f$ is a metric of curvature $1$ with conical singularities of conical angles $4\pi$ at the critical points of $f$. We study the $\zeta$-regularized determinant of the Laplace operator on $X$ corresponding to the metric $f^*\mathsf m$ as a functional on the moduli space of the pairs $(X, f)$ (i.e. on the Hurwitz space $H_{g, N}(1, \dots, 1)$) and derive an explicit formula for the functional.
Databáze: arXiv