Whittaker coinvariants for $\mathrm{GL}(m|n)$
Autor: | Brundan, Jonathan, Goodwin, Simon M. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Adv. Math. 347 (2019), 273-339 |
Druh dokumentu: | Working Paper |
Popis: | Let $W_{m|n}$ be the (finite) $W$-algebra attached to the principal nilpotent orbit in the general linear Lie superalgebra $\mathfrak{gl}_{m|n}(\mathbb{C})$. In this paper we study the {\em Whittaker coinvariants functor}, which is an exact functor from category $\mathcal O$ for $\mathfrak{gl}_{m|n}(\mathbb{C})$ to a certain category of finite-dimensional modules over $W_{m|n}$. We show that this functor has properties similar to Soergel's functor $\mathbb V$ in the setting of category $\mathcal O$ for a semisimple Lie algebra. We also use it to compute the center of $W_{m|n}$ explicitly, and deduce some consequences for the classification of blocks of $\mathcal O$ up to Morita/derived equivalence. Comment: 58 pages, minor changes |
Databáze: | arXiv |
Externí odkaz: |