Whittaker coinvariants for $\mathrm{GL}(m|n)$

Autor: Brundan, Jonathan, Goodwin, Simon M.
Rok vydání: 2016
Předmět:
Zdroj: Adv. Math. 347 (2019), 273-339
Druh dokumentu: Working Paper
Popis: Let $W_{m|n}$ be the (finite) $W$-algebra attached to the principal nilpotent orbit in the general linear Lie superalgebra $\mathfrak{gl}_{m|n}(\mathbb{C})$. In this paper we study the {\em Whittaker coinvariants functor}, which is an exact functor from category $\mathcal O$ for $\mathfrak{gl}_{m|n}(\mathbb{C})$ to a certain category of finite-dimensional modules over $W_{m|n}$. We show that this functor has properties similar to Soergel's functor $\mathbb V$ in the setting of category $\mathcal O$ for a semisimple Lie algebra. We also use it to compute the center of $W_{m|n}$ explicitly, and deduce some consequences for the classification of blocks of $\mathcal O$ up to Morita/derived equivalence.
Comment: 58 pages, minor changes
Databáze: arXiv