Some remarks on derivations on the algebra of operators in Hilbert pro-C*-bimodules
Autor: | Karimi, Khadijeh, Sharifi, Kamran |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Suppose $A$ is a pro-C*-algebra. Let $L_{A}(E)$ be the pro-C*-algebra of adjointable operators on a Hilbert $A$-module $E$ and let $K_{A}(E)$ be the closed two sided $*$-ideal of all compact operators on $E$. We prove that if $E$ be a full Hilbert $A$-module, the innerness of derivations on $K_{A}(E)$ implies the innerness of derivations on $L_{A}(E)$. We show that if $A$ is a commutative pro-C*-algebra and $E$ is a Hilbert $A$-bimodule then every derivation on $K_{A}(E)$ is zero. Moreover, if $A$ is a commutative $\sigma$-C*-algebra and $E$ is a Hilbert $A$-bimodule then every derivation on $L_{A}(E)$ is zero, too. Comment: 8 pages, accepted |
Databáze: | arXiv |
Externí odkaz: |