The corank of a rectangular random integer matrix

Autor: Koplewitz, Shaked
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: We show that under reasonable conditions, a random $n\times (2+\epsilon) n$ integer matrix is surjective on $\mathbb{Z}^{n}$ with probability $1-O(e^{-cn})$. We also conjecture that this should hold for $n\times (1+\epsilon)n$, and provide a counterexample to show that our "reasonableness" conditions are necessary.
Databáze: arXiv