The corank of a rectangular random integer matrix
Autor: | Koplewitz, Shaked |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that under reasonable conditions, a random $n\times (2+\epsilon) n$ integer matrix is surjective on $\mathbb{Z}^{n}$ with probability $1-O(e^{-cn})$. We also conjecture that this should hold for $n\times (1+\epsilon)n$, and provide a counterexample to show that our "reasonableness" conditions are necessary. |
Databáze: | arXiv |
Externí odkaz: |