Texture and Color-based Image Retrieval Using the Local Extrema Features and Riemannian Distance

Autor: Pham, Minh-Tan, Mercier, Grégoire, Bombrun, Lionel, Michel, Julien
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: A novel efficient method for content-based image retrieval (CBIR) is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted at characteristic points (i.e. keypoints) within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between the topological feature spaces (i.e. manifolds) formed by the sets of local descriptors generated from these images. In this work, we propose to extract and use the local extrema pixels as our feature points. Then, the so-called local extrema-based descriptor (LED) is generated for each keypoint by integrating all color, spatial as well as gradient information captured by a set of its nearest local extrema. Hence, each image is encoded by a LED feature point cloud and riemannian distances between these point clouds enable us to tackle CBIR. Experiments performed on Vistex, Stex and colored Brodatz texture databases using the proposed approach provide very efficient and competitive results compared to the state-of-the-art methods.
Comment: This paper has been withdrawn by the author due to a crucial equation modification in part II.B
Databáze: arXiv