Chromatic Zagreb indices for graphical embodiment of colour clusters

Autor: Kok, Johan, Sudev, Naduvath, Jamil, Muhammad Kamran
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: For a colour cluster $\mathbb{C} =(\mathcal{C}_1,\mathcal{C}_2, \mathcal{C}_3,\ldots,\mathcal{C}_\ell)$, where $\mathcal{C}_i$ is a colour class such that $|\mathcal{C}_i|=r_i$, a positive integer, we investigate two types of simple connected graph structures $G^{\mathbb{C}}_1$, $G^{\mathbb{C}}_2$ which represent graphical embodiments of the colour cluster such that the chromatic numbers $\chi(G^{\mathbb{C}}_1)=\chi(G^{\mathbb{C}}_2)=\ell$ and $\min\{\varepsilon(G^{\mathbb{C}}_1)\}=\min\{\varepsilon(G^{\mathbb{C}}_2)\} =\sum\limits_{i=1}^{\ell}r_i-1$. Therefore, the problem is the edge-minimality inverse to finding the chromatic number of a given simple connected graph. In this paper, we also discuss the chromatic Zagreb indices corresponding to $G^{\mathbb{C}}_1$, $G^{\mathbb{C}}_2$.
Comment: 15 pages, 2 figures, communicated
Databáze: arXiv