Learning Adaptive Parameter Tuning for Image Processing

Autor: Dong, Jingming, Frosio, Iuri, Kautz, Jan
Rok vydání: 2016
Předmět:
Zdroj: Jinming Dong, Iuri Frosio, Jan Kautz, Learning Adaptive Parameter Tuning for Image Processing, Proc. EI 2018, Image Processing: Algorithms and Systems XVI, Burlingame, USA, 28 Jan - 2 Feb 2018
Druh dokumentu: Working Paper
Popis: The non-stationary nature of image characteristics calls for adaptive processing, based on the local image content. We propose a simple and flexible method to learn local tuning of parameters in adaptive image processing: we extract simple local features from an image and learn the relation between these features and the optimal filtering parameters. Learning is performed by optimizing a user defined cost function (any image quality metric) on a training set. We apply our method to three classical problems (denoising, demosaicing and deblurring) and we show the effectiveness of the learned parameter modulation strategies. We also show that these strategies are consistent with theoretical results from the literature.
Databáze: arXiv