The reversible negacyclic codes over finite fields

Autor: Zhu, Shixin, Pang, Binbin, Sun, Zhonghua
Rok vydání: 2016
Předmět:
Zdroj: J Syst Sci Complex 31, 1065-1077 (2018)
Druh dokumentu: Working Paper
DOI: 10.1007/s11424-017-6301-7
Popis: In this paper, by investigating the factor of the $x^n+1$, we deduce that the structure of the reversible negacyclic code over the finite field $\mathbb{F}_{q}$, where $q$ is an odd prime power. Though studying $q-$cyclotomic cosets modulo $2n$, we obtain the parameters of negacyclic BCH code of length $n=\frac{q^\ell+1}{2}$ , $n=\frac{q^m-1}{2(q-1)}$ and $n=\frac{q^{t\cdot2^\tau}-1}{2(q^t+1)}$. Some optimal linear codes from negacyclic codes are given. Finally, we discuss a class of MDS LCD negacyclic codes.
Databáze: arXiv