Autor: |
Di Giosia, Leonardo, Habib, Jahangir, Kenigsberg, Lea, Pittman, Dylanger, Zhu, Weitao |
Rok vydání: |
2016 |
Předmět: |
|
Druh dokumentu: |
Working Paper |
Popis: |
We have discovered a "little" gap in our proof of the sharp conjecture that in $\mathbb{R}^n$ with volume and perimeter densities $r^m$ and $r^k$, balls about the origin are uniquely isoperimetric if $0 < m \leq k - k/(n+k-1)$, that is, if they are stable (and $m > 0$). The implicit unjustified assumption is that the generating curve is convex. |
Databáze: |
arXiv |
Externí odkaz: |
|