Toda systems and hypergeometric equations

Autor: Lin, Chang-Shou, Nie, Zhaohu, Wei, Juncheng
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: This paper establishes certain existence and classification results for solutions to $SU(n)$ Toda systems with three singular sources at 0, 1, and $\infty$. First, we determine the necessary conditions for such an $SU(n)$ Toda system to be related to an $n$th order hypergeometric equation. Then, we construct solutions for $SU(n)$ Toda systems that satisfy the necessary conditions and also the interlacing conditions from Beukers and Heckman. Finally, for $SU(3)$ Toda systems satisfying the necessary conditions, we classify, under a natural reality assumption, that all the solutions are related to hypergeometric equations. This proof uses the Pohozaev identity.
Comment: 21 pages
Databáze: arXiv