Dynamical phase diagram of spin chains with long-range interactions
Autor: | Halimeh, Jad C., Zauner-Stauber, Valentin |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Phys. Rev. B 96, 134427 (2017) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevB.96.134427 |
Popis: | Using an infinite Matrix Product State (iMPS) technique based on the time-dependent variational principle (TDVP), we study two major types of dynamical phase transitions (DPT) in the one-dimensional transverse-field Ising model (TFIM) with long-range power-law ($\propto1/r^{\alpha}$ with $r$ inter-spin distance) interactions out of equilibrium in the thermodynamic limit -- \textit{DPT-I}: based on an order parameter in a (quasi-)steady state, and \textit{DPT-II}: based on non-analyticities (cusps) in the Loschmidt-echo return rate. We construct the corresponding rich dynamical phase diagram, whilst considering different quench initial conditions. We find a nontrivial connection between both types of DPT based on their critical lines. Moreover, and very interestingly, we detect a new DPT-II dynamical phase in a certain range of interaction exponent $\alpha$, characterized by what we call \textit{anomalous cusps} that are distinct from the \textit{regular cusps} usually associated with DPT-II. Our results provide the characterization of experimentally accessible signatures of the dynamical phases studied in this work. Comment: Journal article. 6 pages and 7 figures |
Databáze: | arXiv |
Externí odkaz: |