Super-de Sitter and alternative super-Poincar\'e symmetries

Autor: Tolstoy, V. N.
Rok vydání: 2016
Předmět:
Zdroj: Lie Theory and Its Application in Physics (Ed. V. Dobrev), Springer Proceedings in Mathematics, v. 111, (2014), 357--367
Druh dokumentu: Working Paper
DOI: 10.1007/978-4-431-55285-7_26
Popis: It is well-known that de Sitter Lie algebra $\mathfrak{o}(1,4)$ contrary to anti-de Sitter one $\mathfrak{o}(2,3)$ does not have a standard $\mathbb{Z}_2$-graded superextension. We show here that the Lie algebra $\mathfrak{o}(1,4)$ has a superextension based on the $\mathbb{Z}_2\times\mathbb{Z}_2$-grading. Using the standard contraction procedure for this superextension we obtain an {\it alternative} super-Poincar\'e algebra with the $\mathbb{Z}_2\times\mathbb{Z}_2$-grading.
Comment: 10 pages, X. International Workshop LIE THEORY AND ITS APPLICATIONS IN PHYSICS, (Varna, Bulgaria, 2013)
Databáze: arXiv