Super-de Sitter and alternative super-Poincar\'e symmetries
Autor: | Tolstoy, V. N. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Lie Theory and Its Application in Physics (Ed. V. Dobrev), Springer Proceedings in Mathematics, v. 111, (2014), 357--367 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/978-4-431-55285-7_26 |
Popis: | It is well-known that de Sitter Lie algebra $\mathfrak{o}(1,4)$ contrary to anti-de Sitter one $\mathfrak{o}(2,3)$ does not have a standard $\mathbb{Z}_2$-graded superextension. We show here that the Lie algebra $\mathfrak{o}(1,4)$ has a superextension based on the $\mathbb{Z}_2\times\mathbb{Z}_2$-grading. Using the standard contraction procedure for this superextension we obtain an {\it alternative} super-Poincar\'e algebra with the $\mathbb{Z}_2\times\mathbb{Z}_2$-grading. Comment: 10 pages, X. International Workshop LIE THEORY AND ITS APPLICATIONS IN PHYSICS, (Varna, Bulgaria, 2013) |
Databáze: | arXiv |
Externí odkaz: |