Some remarks on the differences between ordinates of consecutive zeta zeros
Autor: | Ivić, Aleksandar |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | If $0 < \gamma_1 \le \gamma_2 \le \gamma_3 \le \ldots$ denote ordinates of complex zeros of the Riemann zeta-function $\zeta(s)$, then several results involving the maximal order of $\gamma_{n+1}-\gamma_n$ and the sum $$ \sum_{0<\gamma_n\le T}{(\gamma_{n+1}-\gamma_n)}^k \qquad(k>0) $$ are proved. Comment: 13 pages |
Databáze: | arXiv |
Externí odkaz: |