On the number of factorizations of an integer
Autor: | Balasubramanian, R., Srivastav, Priyamvad |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $f(n)$ denote the number of unordered factorizations of a positive integer $n$ into factors larger than $1$. We show that the number of distinct values of $f(n)$, less than or equal to $x$, is at most $\exp \left( C \sqrt{\frac{\log x}{\log \log x}} \left( 1 + o(1) \right) \right)$, where $C=2\pi\sqrt{2/3}$ and $x$ is sufficiently large. This improves upon a previous result of the first author and F. Luca. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |