On the number of factorizations of an integer

Autor: Balasubramanian, R., Srivastav, Priyamvad
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: Let $f(n)$ denote the number of unordered factorizations of a positive integer $n$ into factors larger than $1$. We show that the number of distinct values of $f(n)$, less than or equal to $x$, is at most $\exp \left( C \sqrt{\frac{\log x}{\log \log x}} \left( 1 + o(1) \right) \right)$, where $C=2\pi\sqrt{2/3}$ and $x$ is sufficiently large. This improves upon a previous result of the first author and F. Luca.
Comment: 9 pages
Databáze: arXiv