Autor: |
Baruch, Ehud Moshe, Purkait, Soma |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Can. J. Math.-J. Can. Math. 72 (2020) 326-372 |
Druh dokumentu: |
Working Paper |
DOI: |
10.4153/S0008414X19000233 |
Popis: |
We define a subspace of the space of holomorphic modular forms of weight $k+1/2$ and level $4M$ where $M$ is odd and square-free. We show that this subspace is isomorphic under the Shimura-Niwa correspondence to the space of newforms of weight $2k$ and level $2M$ and that this is a Hecke isomorphism. The space we define is a proper subspace of the orthogonal complement of the Kohnen plus space if the Kohnen plus space is nonzero. |
Databáze: |
arXiv |
Externí odkaz: |
|