An Improved Point-Line Incidence Bound Over Arbitrary Fields

Autor: Stevens, Sophie, de Zeeuw, Frank
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1112/blms.12077
Popis: We prove a new upper bound for the number of incidences between points and lines in a plane over an arbitrary field $\mathbb{F}$, a problem first considered by Bourgain, Katz and Tao. Specifically, we show that $m$ points and $n$ lines in $\mathbb{F}^2$, with $m^{7/8}Comment: 18 pages. To appear in the Bulletin of the London Mathematical Society
Databáze: arXiv