Lasing Action with Gold Nanorod Hyperbolic Metamaterials

Autor: Chandrasekar, Rohith, Wang, Zhuoxian, Meng, Xiangeng, Shalaginov, Mikhail Y., Lagutchev, Alexei, Kim, Young L., Wei, Alexander, Kildishev, Alexander V., Boltasseva, Alexandra, Shalaev, Vladimir M.
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: Coherent nanoscale photon sources are of paramount importance to achieving all-optical communication. Several nanolasers smaller than the diffraction limit have been theoretically proposed and experimentally demonstrated using plasmonic cavities to confine optical fields. Such compact cavities exhibit large Purcell factors, thereby enhancing spontaneous emission, which feeds into the lasing mode. However, most plasmonic nanolasers reported so far have employed resonant nanostructures and therefore had the lasing restricted to the proximity of the resonance wavelength. Here, we report on an approach based on gold nanorod hyperbolic metamaterials for lasing. Hyperbolic metamaterials provide broadband Purcell enhancement due to large photonic density of optical states, while also supporting surface plasmon modes to deliver optical feedback for lasing due to nonlocal effects in nanorod media. We experimentally demonstrate the advantage of hyperbolic metamaterials in achieving lasing action by its comparison with that obtained in a metamaterial with elliptic dispersion. The conclusions from the experimental results are supported with numerical simulations comparing the Purcell factors and surface plasmon modes for the metamaterials with different dispersions. We show that although the metamaterials of both types support lasing, emission with hyperbolic samples is about twice as strong with 35% lower threshold vs. the elliptic ones. Hence, hyperbolic metamaterials can serve as a convenient platform of choice for nanoscale coherent photon sources in a broad wavelength range.
Databáze: arXiv