A geometric invariant characterising initial data for the Kerr-Newman spacetime

Autor: Cole, Michael J., Kroon, Juan A. Valiente
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1007/s00023-017-0606-x
Popis: We describe the construction of a geometric invariant characterising initial data for the Kerr-Newman spacetime. This geometric invariant vanishes if and only if the initial data set corresponds to exact Kerr-Newman initial data, and so characterises this type of data. We first illustrate the characterisation of the Kerr-Newman spacetime in terms of Killing spinors. The space spinor formalism is then used to obtain a set of four independent conditions on an initial Cauchy hypersurface that guarantee the existence of a Killing spinor on the development of the initial data. Following a similar analysis in the vacuum case, we study the properties of solutions to the approximate Killing spinor equation and use them to construct the geometric invariant.
Comment: 34 pages
Databáze: arXiv