Rank-two vector bundles on non-minimal ruled surfaces
Autor: | Aprodu, Marian, Costa, Laura, Miro-Roig, Rosa Maria |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Trans. Amer. Math. Soc. 370 (2018), 3913-3929 |
Druh dokumentu: | Working Paper |
DOI: | 10.1090/tran/7062 |
Popis: | We continue previous works by various authors and study the birational geometry of moduli spaces of stable rank-two vector bundles on surfaces with Kodaira dimension $-\infty$. To this end, we express vector bundles as natural extensions, by using two numerical invariants associated to vector bundles, similar to the invariants defined by Brinzanescu and Stoia in the case of minimal surfaces. We compute explicitly these natural extensions on blowups of general points on a minimal surface. In the case of rational surfaces, we prove that any irreducible component of a moduli space is either rational or stably rational. Comment: to appear in Tran. A.M.S |
Databáze: | arXiv |
Externí odkaz: |