Quantum Magnetism with Mesoscopic Bose-Einstein Condensates

Autor: Gallemí, A., Queraltó, G., Guilleumas, M., Mayol, R., Sanpera, A.
Rok vydání: 2016
Předmět:
Zdroj: Phys. Rev. A 94, 063626 (2016)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevA.94.063626
Popis: Lattice gases in the strongly correlated regime have been proven to simulate quantum magnetic models under certain conditions: the mapping of the double-well system onto the Lipkin-Meshkov-Glick spin model is a paradigmatic case. A suitable definition of the length in the Hilbert space of the system leads to the concept of a correlation length, whose divergence is a characteristic property of continuous quantum phase transitions. We calculate the finite-size scaling of some observables like e.g. the magnetization or the population imbalance, as well as of the Schmidt gap, obtaining in this way the critical exponents associated to such transitions. The systematic definition of the Schmidt gap in extended Hamiltonians provides a good tool to analyze the set of critical exponents associated to transitions in systems formed by a larger number of traps. This demonstrates, thus, the potential use of mesoscopic Bose-Einstein condensates as quantum simulators of condensed matter systems.
Comment: 6 pages. 4 figures. arXiv admin note: text overlap with arXiv:1411.6004
Databáze: arXiv