Popis: |
The actinide elemental metals are scare, often toxic and radio active, causing challenges for both experiments and theory while offering fascinating physics. For practical purposes they are the prevalent building blocks for materials where nuclear properties are of interest. Here, however, we are focusing on fundamental properties of the actinides related to their electronic structure and characteristic bonding in the condensed state. The series of actinides is naturally divided into two segments. First, the set of lighter actinides thorium through plutonium, often referred to as the early actinides, display variations of their atomic volume reminiscent of transition metals suggesting a gradual occupation of bonding 5f states. Second, the heavier (or late) actinides, Am and onwards, demonstrate a volume behavior comparable to the rare-earth metals thus implying nonbonding 5f states. Arguably, one can distinguish plutonium metal as special case lying between these two subsets because it shares some features from both. Therefore, we discuss the early actinides, plutonium metal, and the late actinides separately applying first-principles density-functional-theory (DFT) calculations. The analysis includes successes and failures of the theory to describe primarily phase stability, bonding, and electronic structure. |