Steady States of Infinite-Size Dissipative Quantum Chains via Imaginary Time Evolution

Autor: Gangat, Adil A., I, Te, Kao, Ying-Jer
Rok vydání: 2016
Předmět:
Zdroj: Phys. Rev. Lett. 119, 010501 (2017)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevLett.119.010501
Popis: Directly in the thermodynamic limit, we show how to combine imaginary and real time evolution of tensor networks to efficiently and accurately find the nonequilibrium steady states (NESS) of one-dimensional dissipative quantum lattices governed by the Lindblad master equation. The imaginary time evolution first bypasses any highly correlated portions of the real-time evolution trajectory by directly converging to the weakly correlated subspace of the NESS, after which real time evolution completes the convergence to the NESS with high accuracy. We demonstrate the power of the method with the dissipative transverse field quantum Ising chain. We show that a crossover of an order parameter shown to be smooth in previous finite-size studies remains smooth in the thermodynamic limit.
Comment: 5+3 pages, 5 figures, 2 tables
Databáze: arXiv