CO-Induced Restructuring on Stepped Pt Surfaces: A Molecular Dynamics Study
Autor: | Michalka, Joseph R., Latham, Andrew P., Gezelter, J. Daniel |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | J. Phys. Chem. C, 2016, 120(32), pp 18180-18190 |
Druh dokumentu: | Working Paper |
DOI: | 10.1021/acs.jpcc.6b06619 |
Popis: | The effects of plateau width and step edge kinking on carbon monoxide (CO)-induced restructuring of platinum surfaces were explored using molecular dynamics (MD) simulations. Platinum crystals displaying four different vicinal surfaces [(321), (765), (112), and (557)] were constructed and exposed to partial coverages of carbon monoxide. Platinum-CO interactions were fit to recent experimental data and density functional theory (DFT) calculations, providing a classical interaction model that captures the atop binding preference on Pt. The differences in Pt-Pt binding strength between edge atoms on the various facets were found to play a significant role in step edge wandering and reconstruction events. Because the mechanism for step doubling relies on a stochastic meeting of two wandering edges, the widths of the plateaus on the original surfaces was also found to play a role in these reconstructions. On the Pt(321) surfaces, the CO adsorbate was found to assist in reordering the kinked step edges into straight {100} edge segments. Comment: 36 pages, 10 figures |
Databáze: | arXiv |
Externí odkaz: |