Semilattice Indecomposable Finite Semigroups With Large Subsemilattices
Autor: | Zubor, Márton |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we show that if $Y$ is a subsemilattice of a finite semilattice indecomposable semigroup $S$ then $|Y|\leq 2\left\lfloor \frac{|S|-1}{4}\right\rfloor+1$. We also characterize finite semilattice indecomposable semigroups $S$ which contains a subsemilattice $Y$ with $|S|=4k+1$ and $|Y|=2\left\lfloor \frac{|S|-1}{4}\right\rfloor+1=2k+1$. They are special inverse semigroups. Our investigation is based on our new result proved in this paper which characterize finite semilattice indecomposable semigroups with a zero by only use the properties of its semigroup algebra. Comment: 11 pages |
Databáze: | arXiv |
Externí odkaz: |