Limit theorems for Markov walks conditioned to stay positive under a spectral gap assumption
Autor: | Grama, Ion, Lauvergnat, Ronan, Page, Émile Le |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Consider a Markov chain $(X_n)_{n\geqslant 0}$ with values in the state space $\mathbb X$. Let $f$ be a real function on $\mathbb X$ and set $S_0=0,$ $S_n = f(X_1)+\cdots + f(X_n),$ $n\geqslant 1$. Let $\mathbb P_x$ be the probability measure generated by the Markov chain starting at $X_0=x$. For a starting point $y \in \mathbb R$ denote by $\tau_y$ the first moment when the Markov walk $(y+S_n)_{n\geqslant 1}$ becomes non-positive. Under the condition that $S_n$ has zero drift, we find the asymptotics of the probability $\mathbb P_x ( \tau_y >n )$ and of the conditional law $\mathbb P_x ( y+S_n\leqslant \cdot\sqrt{n} | \tau_y >n )$ as $n\to +\infty.$ Comment: Figure 1 corrected |
Databáze: | arXiv |
Externí odkaz: |