The Burnside problem for $\text{Diff}_{\text{Vol}}(\mathbb{S}^2)$
Autor: | Hurtado, Sebastian, Kocsard, Alejandro, Rodríguez-Hertz, Federico |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Duke Math. J. 169, no. 17 (2020), 3261-3290 |
Druh dokumentu: | Working Paper |
DOI: | 10.1215/00127094-2020-0028 |
Popis: | Let $S$ be a closed surface and $\text{Diff}_{\text{Vol}}(S)$ be the group of volume preserving diffeomorphisms of $S$. A finitely generated group $G$ is periodic of bounded exponent if there exists $k \in \mathbb{N}$ such that every element of $G$ has order at most $k$. We show that every periodic group of bounded exponent $G \subset \text{Diff}_{\text{Vol}}(S)$ is a finite group. Comment: Added Alejandro Kocsard and Federico Rodr\'iguez-Hertz as coauthors. Include new results about actions of periodic groups on Tori and hyperbolic manifolds |
Databáze: | arXiv |
Externí odkaz: |