Generalized Laguerre Polynomials with Position-Dependent Effective Mass Visualized via Wigner's Distribution Functions
Autor: | Cherroudz, O, Yahiaoui, S-A, Bentaiba, M |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We construct, analytically and numerically, the Wigner distribution functions for the exact solutions of position-dependent effective mass Schr\"odinger equation for two cases belonging to the generalized Laguerre polynomials. Using a suitable quantum canonical transformation, expectation values of position and momentum operators can be obtained analytically in order to verify the universality of the Heisenberg's uncertainty principle. Comment: 17 pages, 38 figures |
Databáze: | arXiv |
Externí odkaz: |