Sets of Lengths of Powers of a Variable
Autor: | Belshoff, Richard, Kline, Daniel, Rogers, Mark W. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | A positive integer k is a length of a polynomial if that polynomial factors into a product of k irreducible polynomials. We find the set of lengths of polynomials of the form x^n in R[x], where (R, m) is an Artinian local ring with m^2 = 0. Comment: To appear in the Rocky Mountain Journal of Mathematics |
Databáze: | arXiv |
Externí odkaz: |