Sets of Lengths of Powers of a Variable

Autor: Belshoff, Richard, Kline, Daniel, Rogers, Mark W.
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: A positive integer k is a length of a polynomial if that polynomial factors into a product of k irreducible polynomials. We find the set of lengths of polynomials of the form x^n in R[x], where (R, m) is an Artinian local ring with m^2 = 0.
Comment: To appear in the Rocky Mountain Journal of Mathematics
Databáze: arXiv