Knapsack problem for nilpotent groups

Autor: Mishchenko, Alexei, Treier, Alexander
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that Knapsack problem (KP) is undecidable for any group of nilpotency class two if the number of generators (without torsion) of the derived subgroup is at least 322. This result together with the fact that if KP is undecidable for a subgroup then it undecidable for the whole group allows us extend our result to certain classes of polycyclic groups, linear groups and nilpotent groups of higher nilpotency class.
Comment: 14 pages
Databáze: arXiv