Links with finite $n$-quandles

Autor: Hoste, Jim, Shanahan, Patrick D.
Rok vydání: 2016
Předmět:
Zdroj: Algebr. Geom. Topol. 17 (2017) 2807-2823
Druh dokumentu: Working Paper
DOI: 10.2140/agt.2017.17.2807
Popis: We prove a conjecture of Przytycki which asserts that the $n$-quandle of a link $L$ in the 3-sphere is finite if and only if the fundamental group of the $n$-fold cyclic branched cover of the 3-sphere, branched over $L$, is finite.
Comment: 16 pages, 4 figures, minor revisions in Sections 1-4, new Section 5 added which enumerates all links in $S^3$ with a finite $n$-quandle for some $n$, references added and updated
Databáze: arXiv