Links with finite $n$-quandles
Autor: | Hoste, Jim, Shanahan, Patrick D. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Algebr. Geom. Topol. 17 (2017) 2807-2823 |
Druh dokumentu: | Working Paper |
DOI: | 10.2140/agt.2017.17.2807 |
Popis: | We prove a conjecture of Przytycki which asserts that the $n$-quandle of a link $L$ in the 3-sphere is finite if and only if the fundamental group of the $n$-fold cyclic branched cover of the 3-sphere, branched over $L$, is finite. Comment: 16 pages, 4 figures, minor revisions in Sections 1-4, new Section 5 added which enumerates all links in $S^3$ with a finite $n$-quandle for some $n$, references added and updated |
Databáze: | arXiv |
Externí odkaz: |