Suites r\'ecurrentes lin\'eaires d'ordre 2 \`a divisibilit\'e forte
Autor: | Bauval, A. |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | RMS (Revue des Math\'ematiques de l'Enseignement Sup\'erieur), n{\deg} 127-3, 2017 |
Druh dokumentu: | Working Paper |
Popis: | We reprove twice, in a simpler but as elementary way, a result by Hor\'ak and Skula (1985) who determined, among all sequences of integers defined by $$u_1=1,\quad u_2=R,\quad u_{n+2}=Pu_{n+1}-Qu_n$$ for some integers $P,Q,R$, those which satisfy the strong divisibility condition $$\forall i,j\in\mathbb N^*\quad u_i\land u_j=\left|u_{i\land j}\right|,$$ where $\land$ denotes the greatest common divisor. Comment: in French |
Databáze: | arXiv |
Externí odkaz: |