Controlling electromagnetic scattering with wire metamaterial resonators

Autor: Filonov, Dmitry S., Shalin, Alexander S., Iorsh, Ivan, Belov, Pavel A., Ginzburg, Pavel
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1364/JOSAA.33.001910
Popis: Manipulation of radiation is required for enabling a span of electromagnetic applications. Since properties of antennas and scatterers are very sensitive to a surrounding environment, macroscopic artificially created materials are good candidates for shaping their characteristics. In particular, metamaterials enable controlling both dispersion and density of electromagnetic states, available for scattering from an object. As the result, properly designed electromagnetic environment could govern waves' phenomena. Here electromagnetic properties of scattering dipoles, situated inside a wire medium (metamaterial) are analyzed both numerically and experimentally. Impact of the metamaterial geometry, dipole arrangement inside the medium, and frequency of the incident radiation on scattering phenomena was studied. It was shown that the resonance of the dipole hybridizes with Fabry-Perot modes of the metamaterial, giving rise to a complete reshaping of electromagnetic properties. Regimes of controlled scattering suppression and super-scattering were observed. Numerical analysis is in an agreement with experiments, performed at the GHz spectral range. The reported approach to scattering control with metamaterials could be directly mapped into optical and infrared spectral ranges by employing scalability properties of Maxwell's equations.
Databáze: arXiv