A geometric analogue of a conjecture of Gross and Reeder
Autor: | Kamgarpour, Masoud, Sage, Daniel S. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Amer. J. Math. 141 (2019) 1457-1476 |
Druh dokumentu: | Working Paper |
DOI: | 10.1353/ajm.2019.0038 |
Popis: | Let G be a simple complex algebraic group. We prove that the irregularity of the adjoint connection of an irregular flat G-bundle on the formal punctured disk is always greater than or equal to the rank of G. This can be considered as a geometric analogue of a conjecture of Gross and Reeder. We will also show that the irregular connections with minimum adjoint irregularity are precisely the (formal) Frenkel-Gross connections. Comment: minor corrections |
Databáze: | arXiv |
Externí odkaz: |