Splittings of link concordance groups
Autor: | Martin, Taylor E., Otto, Carolyn |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We establish several results about two short exact sequences involving lower terms of the $n$-solvable filtration, $\{\mathcal{F}^m_n\}$ of the string link concordance group $\mathcal{C}^m$. We utilize the Thom-Pontryagin construction to show that the Sato-Levine invariants $\bar{\mu}_{(iijj)}$ must vanish for 0.5-solvable links. Using this result, we show that the short exact sequence $0\rightarrow \mathcal{F}^m_0/\mathcal{F}^m_{0.5} \rightarrow \mathcal{F}^m_{-0.5}/\mathcal{F}^m_{0.5} \rightarrow \mathcal{F}^m_{-0.5}/\mathcal{F}^m_0 \rightarrow 0$ does not split for links of two or more components, in contrast to the fact that it splits for knots. Considering lower terms of the filtration $\{\mathcal{F}^m_n\}$ in the short exact sequence $0\rightarrow \mathcal{F}^m_{-0.5}/\mathcal{F}^m_{0} \rightarrow \mathcal{C}^m/\mathcal{F}^m_{0} \rightarrow \mathcal{C}^m/\mathcal{F}^m_{-0.5} \rightarrow 0$, we show that while the sequence does not split for $m\ge 3$, it does indeed split for $m=2$. We conclude that the quotient $\mathcal{C}^2/\mathcal{F}^2_0 \cong \mathbb{Z}_2\oplus \mathbb{Z}_2\oplus\mathbb{Z}_2 \oplus \mathbb{Z}$. Comment: 10 pages, 4 figures |
Databáze: | arXiv |
Externí odkaz: |