On the periodicity of irreducible elements in arithmetical congruence monoids

Autor: Hartzer, Jacob, O'Neill, Christopher
Rok vydání: 2016
Předmět:
Zdroj: Integers 17 (2017), #A38
Druh dokumentu: Working Paper
Popis: Arithmetical congruence monoids, which arise in non-unique factorization theory, are multiplicative monoids $M_{a,b}$ consisting of all positive integers $n$ satsfying $n \equiv a \bmod b$. In this paper, we examine the asymptotic behavior of the set of irreducible elements of $M_{a,b}$, and characterize in terms of $a$ and $b$ when this set forms an eventually periodic sequence.
Databáze: arXiv