On the periodicity of irreducible elements in arithmetical congruence monoids
Autor: | Hartzer, Jacob, O'Neill, Christopher |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Integers 17 (2017), #A38 |
Druh dokumentu: | Working Paper |
Popis: | Arithmetical congruence monoids, which arise in non-unique factorization theory, are multiplicative monoids $M_{a,b}$ consisting of all positive integers $n$ satsfying $n \equiv a \bmod b$. In this paper, we examine the asymptotic behavior of the set of irreducible elements of $M_{a,b}$, and characterize in terms of $a$ and $b$ when this set forms an eventually periodic sequence. |
Databáze: | arXiv |
Externí odkaz: |