Another proof of Moon's theorem on generalised tournament score sequences
Autor: | Thörnblad, Erik |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Landau \cite{Landau1953} showed that a sequence $(d_i)_{i=1}^n$ of integers is the score sequence of some tournament if and only if $\sum_{i\in J}d_i \geq \binom{|J|}{2}$ for all $J\subseteq \{1,2,\dots, n\}$, with equality if $|J|=n$. Moon \cite{Moon63} extended this result to generalised tournaments. We show how Moon's result can be derived from Landau's result. Comment: 6 pages |
Databáze: | arXiv |
Externí odkaz: |