Rigidity of integral coisotropic submanifolds of contact manifolds
Autor: | Tortorella, Alfonso Giuseppe |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Lett. Math. Phys. (2018) 108: 883--896 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s11005-017-1005-4 |
Popis: | Unlike Legendrian submanifolds, the deformation problem of coisotropic submanifolds can be obstructed. Starting from this observation, we single out in the contact setting the special class of integral coisotropic submanifolds as the direct generalization of Legendrian submanifolds for what concerns deformation and moduli theory. Indeed, being integral coisotropic is proved to be a rigid condition, and moreover the integral coisotropic deformation problem is unobstructed with discrete moduli space. Comment: v3: 12 pages, published in Lett. Math. Phys., comments still welcome! |
Databáze: | arXiv |
Externí odkaz: |