Hole probabilities for finite and infinite Ginibre ensembles
Autor: | Adhikari, Kartick, Reddy, Nanda Kishore |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We study the hole probabilities of the infinite Ginibre ensemble ${\mathcal X}_{\infty}$, a determinantal point process on the complex plane with the kernel $\mathbb K(z,w)= \frac{1}{\pi}e^{z\bar w-\frac{1}{2}|z|^2-\frac{1}{2}|w|^2}$ with respect to the Lebesgue measure on the complex plane. Let $U$ be an open subset of open unit disk $\mathbb D$ and ${\mathcal X}_{\infty}(rU)$ denote the number of points of ${\mathcal X}_{\infty}$ that fall in $rU$. Then, under some conditions on $U$, we show that $$ \lim_{r\to \infty}\frac{1}{r^4}\log\mathbb P[\mathcal X_{\infty}(rU)=0]=R_{\emptyset}-R_{U}, $$ where $\emptyset$ is the empty set and $$ R_U:=\inf_{\mu\in \mathcal P(U^c)}\left\{\iint \log{\frac{1}{|z-w|}}d\mu(z)d\mu(w)+\int |z|^2d\mu(z) \right\}, $$ $\mathcal P(U^c)$ is the space of all compactly supported probability measures with support in $U^c$. Using potential theory, we give an explicit formula for $R_U$, the minimum possible energy of a probability measure compactly supported on $U^c$ under logarithmic potential with a quadratic external field. Moreover, we calculate $R_U$ explicitly for some special sets like annulus, cardioid, ellipse, equilateral triangle and half disk. Comment: 28 pages. To appear in International Mathematics Research Notices (IMRN) |
Databáze: | arXiv |
Externí odkaz: |