Alternate modules are subsymplectic
Autor: | Guerin, Clement |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper, an alternate module $(A,\phi)$ is a finite abelian group $A$ with a $\mathbb{Z}$-bilinear application $\phi:A\times A\rightarrow \mathbb{Q}/\mathbb{Z}$ which is alternate (i.e. zero on the diagonal). We shall prove that any alternate module is subsymplectic, i.e. if $(A,\phi)$ has a Lagrangian of cardinal $n$ then there exists an abelian group $B$ of order $n$ such that $(A,\phi)$ is a submodule of the standard symplectic module $B\times B^*$. Comment: 22 pages |
Databáze: | arXiv |
Externí odkaz: |