Spectral flow for real skew-adjoint Fredholm operators
Autor: | Carey, Alan L., Phillips, John, Schulz-Baldes, Hermann |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | An analytic definition of a $\mathbb{Z}_2$-valued spectral flow for paths of real skew-adjoint Fredholm operators is given. It counts the parity of the number of changes in the orientation of the eigenfunctions at eigenvalue crossings through $0$ along the path. The $\mathbb{Z}_2$-valued spectral flow is shown to satisfy a concatenation property and homotopy invariance, and it provides an isomorphism on the fundamental group of the real skew-adjoint Fredholm operators. Moreover, it is connected to a $\mathbb{Z}_2$-index pairing for suitable paths. Applications concern the zero energy bound states at defects in a Majorana chain and a spectral flow interpretation for the $\mathbb{Z}_2$-polarization in these models. Comment: final corrections before publication in J. Spectral Theory |
Databáze: | arXiv |
Externí odkaz: |