Autor: |
Brumley, Farrell, Marshall, Simon |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Compositio Math. 156 (2020) 959-1003 |
Druh dokumentu: |
Working Paper |
DOI: |
10.1112/S0010437X20007125 |
Popis: |
Let $G$ be an anisotropic semisimple group over a totally real number field $F$. Suppose that $G$ is compact at all but one infinite place $v_0$. In addition, suppose that $G_{v_0}$ is $\mathbb{R}$-almost simple, not split, and has a Cartan involution defined over $F$. If $Y$ is a congruence arithmetic manifold of non-positive curvature associated to $G$, we prove that there exists a sequence of Laplace eigenfunctions on $Y$ whose sup norms grow like a power of the eigenvalue. |
Databáze: |
arXiv |
Externí odkaz: |
|