Lower bounds for Maass forms on semisimple groups

Autor: Brumley, Farrell, Marshall, Simon
Rok vydání: 2016
Předmět:
Zdroj: Compositio Math. 156 (2020) 959-1003
Druh dokumentu: Working Paper
DOI: 10.1112/S0010437X20007125
Popis: Let $G$ be an anisotropic semisimple group over a totally real number field $F$. Suppose that $G$ is compact at all but one infinite place $v_0$. In addition, suppose that $G_{v_0}$ is $\mathbb{R}$-almost simple, not split, and has a Cartan involution defined over $F$. If $Y$ is a congruence arithmetic manifold of non-positive curvature associated to $G$, we prove that there exists a sequence of Laplace eigenfunctions on $Y$ whose sup norms grow like a power of the eigenvalue.
Databáze: arXiv