On complete constant scalar curvature K\'ahler metrics with Poincar\'e-Mok-Yau asymptotic property
Autor: | Fu, Jixiang, Yau, Shing-Tung, Zhou, Wubin |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | Let $X$ be a compact K\"ahler manifold and $S$ a subvariety of $X$ with higher co-dimension. The aim is to study complete constant scalar curvature K\"ahler metrics on non-compact K\"ahler manifold $X-S$ with Poincar\'e--Mok--Yau asymptotic property (see Definition \ref{def}). In this paper, the methods of Calabi's ansatz and the moment construction are used to provide some special examples of such metrics. |
Databáze: | arXiv |
Externí odkaz: |