A separable Fr\'echet space of almost universal disposition

Autor: Bargetz, C., Kakol, J., Kubiś, W.
Rok vydání: 2016
Předmět:
Zdroj: J. Funct. Anal. 272(5): 1876-1891, 2017
Druh dokumentu: Working Paper
DOI: 10.1016/j.jfa.2016.09.019
Popis: The Gurari\u{\i} space is the unique separable Banach space $\mathbb{G}$ which is of almost universal disposition for finite-dimensional Banach spaces, which means that for every $\varepsilon>0$, for all finite-dimensional normed spaces $E \subseteq F$, for every isometric embedding ${e}\colon{E}\to{\mathbb{G}}$ there exists an $\varepsilon$-isometric embedding ${f}\colon{F}\to{\mathbb{G}}$ such that $f \restriction E = e$. We show that $\mathbb{G}^{\mathbb{N}}$ with a special sequence of semi-norms is of almost universal disposition for finite-dimensional graded Fr\'echet spaces. The construction relies heavily on the universal operator on the Gurari\u{\i} space, recently constructed by Garbuli\'nska-Wegrzyn and the third author. This yields in particular that $\mathbb{G}^{\mathbb{N}}$ is universal in the class of all separable Fr\'echet spaces.
Comment: 15 pages
Databáze: arXiv