A separable Fr\'echet space of almost universal disposition
Autor: | Bargetz, C., Kakol, J., Kubiś, W. |
---|---|
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | J. Funct. Anal. 272(5): 1876-1891, 2017 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jfa.2016.09.019 |
Popis: | The Gurari\u{\i} space is the unique separable Banach space $\mathbb{G}$ which is of almost universal disposition for finite-dimensional Banach spaces, which means that for every $\varepsilon>0$, for all finite-dimensional normed spaces $E \subseteq F$, for every isometric embedding ${e}\colon{E}\to{\mathbb{G}}$ there exists an $\varepsilon$-isometric embedding ${f}\colon{F}\to{\mathbb{G}}$ such that $f \restriction E = e$. We show that $\mathbb{G}^{\mathbb{N}}$ with a special sequence of semi-norms is of almost universal disposition for finite-dimensional graded Fr\'echet spaces. The construction relies heavily on the universal operator on the Gurari\u{\i} space, recently constructed by Garbuli\'nska-Wegrzyn and the third author. This yields in particular that $\mathbb{G}^{\mathbb{N}}$ is universal in the class of all separable Fr\'echet spaces. Comment: 15 pages |
Databáze: | arXiv |
Externí odkaz: |