Th\'eor\`eme d'Erd\H{o}s-Kac dans presque tous les petits intervalles

Autor: Goudout, Élie
Jazyk: francouzština
Rok vydání: 2016
Předmět:
Zdroj: Acta Arith., 182(2)(2018):101-116
Druh dokumentu: Working Paper
DOI: 10.4064/aa8480-11-2017
Popis: We show that the Erd\H{o}s-Kac theorem is valid in almost all intervals $\left[x,x+h\right]$ as soon as $h$ tends to infinity with $x$. We also show that for all $k$ near $\log\log x$, almost all interval $\left[x,x+\exp\left(\left(\log\log x\right)^{1/2+\varepsilon}\right)\right]$ contains the expected number of integers $n$ such that $\omega(n)=k$. These results are a consequence of the methods introduced by Matom\"aki and Radziwi\l\l\ to estimate sums of multiplicative functions over short intervals.
Comment: 16 pages, in French. Corrected typos, added e-mail address
Databáze: arXiv