Autor: |
Bergounioux, M., Leaci, A., Nardi, G., Tomarelli, F. |
Rok vydání: |
2016 |
Předmět: |
|
Zdroj: |
Fractional Calculus and Applied Analysis, 20(4), pp. 936-962. Retrieved 20 Jan. 2018, from doi:10.1515/fca-2017-0049 |
Druh dokumentu: |
Working Paper |
Popis: |
We investigate the 1D Riemann-Liouville fractional derivative focusing on the connections with fractional Sobolev spaces, the space $BV$ of functions of bounded variation, whose derivatives are not functions but measures and the space $SBV$, say the space of bounded variation functions whose derivative has no Cantor part. We prove that $SBV$ is included in $W^{s,1} $ for every $s \in (0,1)$ while the result remains open for $BV$. We study examples and address open questions. |
Databáze: |
arXiv |
Externí odkaz: |
|