Fractional Sobolev Spaces and Functions of Bounded Variation

Autor: Bergounioux, M., Leaci, A., Nardi, G., Tomarelli, F.
Rok vydání: 2016
Předmět:
Zdroj: Fractional Calculus and Applied Analysis, 20(4), pp. 936-962. Retrieved 20 Jan. 2018, from doi:10.1515/fca-2017-0049
Druh dokumentu: Working Paper
Popis: We investigate the 1D Riemann-Liouville fractional derivative focusing on the connections with fractional Sobolev spaces, the space $BV$ of functions of bounded variation, whose derivatives are not functions but measures and the space $SBV$, say the space of bounded variation functions whose derivative has no Cantor part. We prove that $SBV$ is included in $W^{s,1} $ for every $s \in (0,1)$ while the result remains open for $BV$. We study examples and address open questions.
Databáze: arXiv