Algebraic independence results for values of Theta-constants, II

Autor: Elsner, Carsten, Tachiya, Yohei
Rok vydání: 2016
Předmět:
Druh dokumentu: Working Paper
Popis: Let $\theta_3(\tau)=1+2\sum_{\nu=1}^{\infty} q^{\nu^2}$ with $q=e^{i\pi \tau}$ denote the Thetanullwert of the Jacobi theta function \[\theta(z|\tau) \,=\,\sum_{\nu=-\infty}^{\infty} e^{\pi i\nu^2\tau + 2\pi i\nu z} \,.\] Moreover, let $\theta_2(\tau)=2\sum_{\nu=0}^{\infty} q^{{(\nu+1/2)}^2}$ and $\theta_4(\tau)=1+2\sum_{\nu=1}^{\infty} {(-1)}^{\nu}q^{\nu^2}$. For algebraic numbers $q$ with $0<|q|<1$ and for any $j\in \{ 2,3,4\}$ we prove the algebraic independence over $\mathbb{Q}$ of the numbers $\theta_j(n\tau)$ and $\theta_j(\tau)$ for all odd integers $n\geq 3$. Assuming the same conditions on $q$ and $\tau$ as above, we obtain sufficient conditions by use of a criterion involving resultants in order to decide on the algebraic independence over $\mathbb{Q}$ of $\theta_j(2m\tau)$ and $\theta_j(\tau)$ $(j=2,3,4)$ and of $\theta_3(4m\tau)$ and $\theta_3(\tau)$ with odd positive integers $m$. In particular, we prove the algebraic independence of $\theta_3(n\tau)$ and $\theta_3(\tau)$ for even integers $n$ with $2\leq n\leq 22$. The paper continues the work of the first-mentioned author, who already proved the algebraic independence of $\theta_3(2^m\tau)$ and $\theta_3(\tau)$ for $m=1,2,\dots$.
Comment: 15 pages
Databáze: arXiv